If R (x, y) is a point on the line segment joining the points P (a, b) and Q (b, a) then prove that x + y = a +b.
If 3 points are collinear, then the area of the triangle formed by them is zero.
Area of triangle = 12|x1(y2−y3)+x2(y3−y1)+x3(y1−y2)|=0
⇒x1(y2−y3)+x2(y3−y1)+x3(y1−y2)=0
⇒x(b−a)+a(a−y)+b(y−b)=0
⇒x(b−a)+y(b−a)+a2−b2=0
⇒x(b−a)+y(b−a)−(b2−a2)=0
⇒x(b−a)+y(b−a)−(b+a)(b−a)=0
⇒(b−a)[x+y−(a+b)]=0
⇒x+y=a+b