If R = \{x, y : x, y \epsilon Z, x^2 + y^2 \leq 4\} is a relation defined on the set Z of integers, then write domain of R.
We have,
R={x,y:x,yϵZ,x2+y2≤4}
Now,
x2+y2≤4
⇒y2≤4−x2
⇒y≤√4−x2
Putting x = - 2, -1, 0, 1, 2, we get yϵz.
For other values of x, we get y/ϵz.
∴ Domain (R) = {-2, -1, 0, 1, 2}