If cosecx−sinx=a3and secx−cosx=b3;then what is the value of a2b2(a2 + b2)?
1
a3=cosecx−sinx and b3=secx−cosx(given)⇒a3=1/sinx−sinx and b3=1/cosx−cosx⇒a3=(1−sin2x)/sinx and b3=(1−cos2x)/cosx⇒a3=(cos2x/sinx)and b3=(sin2x/cosx)⇒a=3√(cos2x/sinx) and b=3√(sin2x/cosx)Now the given expression−a2b2(a2+b2)=a4b2+a2b4
Now by putting the values of a and b in it then the expression=[(cos2x/sinx)(4/3)][(sin2x/cosx)(2/3)]+[(cos2x/sinx)(2/3)(sin2x/cosx)(4/3)]=cos2x+sin2x=1