If tanθ=ab, then the value of E =asinθ−bcosθasinθ+bcosθ is−
Dividing both the numerator and the denominator of E by cos θ, we have :
E=atanθ−batanθ+b=a(ab)−ba(ab)+b=a2−b2a2+b2
If tanθ=ab, show that asinθ−bcosθasinθ+bcosθ=a2−b2a2+b2