If roots α,β of the equations x2−px+16=0 satisfy the relation α2+β2=9, then write the value of P.
Since, α,β are the roots of the equation. x2−px+16=0⇒α+β=−ba=−(−p)1=Pand α β=ca=161=16Now,α2+β2=9⇒(α+β)2−2αβ=9 ⇒p2−2×16=9⇒p29+32⇒p=√41