Substitute x=1y in the given equation
then 6y3−11y2+6y−1=0⇒6−11y+6y2−y2=0
⇒y3−6y2+11y−6=0−−−−−−−−−−−−−−(1)
Now roots of (1) are in A.P.let roots be α−β,α,α+β
Then, sum of roots α−β+α+α+β=6
⇒3α=6
∴α=2
Products of the roots (α−β)α(α+β)=6
∴2(4−β2)=6∴β=±1
Roots of (1) are 1,2,3 or 3,2,1
Hence, roots of the given equation are
1,12,13 or 13,12 ,1