If roots of the equation (a−b)x2+(c−a)x+(b−c)=0,a≠b≠c are equal, then a,b,c are in
We have,
Given equation is
(a−b)x2+(c−a)x+(b−c)=0
On comparing that,
Ax2+Bx+C=0
Now,
A=(a−b)
B=(c−a)
C=(b−c)
Roots are equal
Then,
D=0
B2−4AC=0
⇒(c−a)2−4(a−b)(b−c)=0
⇒c2+a2−2ac=4(ab−ac−b2+bc)
⇒c2+a2−2ac=4ab−4ac−4b2+4bc
⇒c2+a2−2ac+4ac=4ab−4b2+4bc
⇒(c+a)2=4b(a−b+c)
Hence,
this is the answer