wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If roots of the equation ax2+bx+c=0 are.αα1.and.α+1α, then prove that (a+b+c)2=b24ac.

Open in App
Solution

Given equation : ax2+bx+c=0(1)

roots : αα1;α+1α

Product of roots α+1α1=ca

aα+a=cαc

α=(c+a)ac

α=c+aca

substituting value of α in α/α1, we get

αα1=c+a/cac+a/ca1
=c+ac+ac+a=c+a2a

substituting value of α/α1 in eq (1)

a(c+a2a)2+b(c+a2a)+c=0

a(c2+a2=2ac)+2abc+2a2b+4a2c=0

c2+a2+2ac+2bc+2ab+4ac=0

Adding b2 on both sides,

a2+b2+c2+2ab+2bc+2ac=b24ac

(a+b+c)2=b24ac

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Definition of Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon