The correct option is B 1
Let the roots of the equation x6−12x5+bx4+cx3+dx2+ex+64=0 be xi, i=1, 2, 3, 4, 5, 6.Now, Sum of roots =−Coefficient of x5Coefficient of x6⇒x1+x2+x3+x4+x5+x6=12and Product of roots=Constant termCoefficient of x6⇒x1x2x3x4x5x6=64Thus, A.M. (x1, x2, x3, x4, x5, x6)=x1+x2+x3+x4+x5+x66=2G.M.(x1, x2, x3, x4, x5, x6)=(x1x2x3x4x5x6)1/6 =(64)1/6=2∵A.M. = G.M.⇒x1=x2=x3=x4=x5=x6=2Hence, the given equation is equivalent to(x−2)6=0or, x6−12x5+60x4−160x3+240x2−192x+64=0∴f(1)=1−12+60−160+240−192+64=1