The correct option is C a+b=0
x2+ax+b=0
Roots are sec2π8 and csc2π8
Sum of the roots =−BA=(−a)=sec2π8+csc2π8
−a=1cos2π8+1sin2π8=sin2z8+sin2π8sin2π8×cos2π8
−a=1sin2α×cos2α
−a=4(2sinαcosα)2=4sin22α=4sin2z4=4(1√2)2
−a=8
a=−8
Product of Roots b=sec2π8×csc2π8
b=1cos2π8×1sin2π8=4(2sinπ8cosπ8)2
b=4sin22π8=4sin2π4=4(1√2)2=8
b=8,a=−8
Therefore we can say that a+b=0