This series is not AP, GP, HP and AGP
How can we proceed?
But we see 12,22,32,42..........∞ are square numbers and 1,x,x2,x3,x4,........∞ is a geometric progression.
If we subtract square numbers. We can form an AP.
To subtract square numbers multiply given series by common ratio and then subtract it with original series.
s=1+22x+32x2+42x3+......∞ -----(1)
Multiply equation 1 by common ratio x
xs=x+22x2+32x3+.....∞ -----(2)
Subtract equation 2 from equation 1
(1−x)s=1+3x+5x2+7x3+....∞ -----(3)
Now, we will see we got Arithmetic - geometric progression.
At this stage you should be able to solve a AGP
Again multiply equation 3 by common ratio x
x(1−x)s=x+3x2+5x2+7x4+....∞ ----(4)
Subtracting equation 4 from equation 3, we get
(1−x)(1−x)s=1+2(x+x2+x3+......∞) (1−x)2s=1+2(x1+x)=1+x1−x s=1+x(1−x)3 Substitute x =
15 s=1+15(1−15)3=7532 32 x 5 = 75