If S1,S2,S3⋯Sp are the sums of infinite geometric series whose first terms are 1,2,3,...p and whose common
ratios are 12,13,14,⋯1p+1 respectively, then S1+S2+S3+⋯+Sp= ___.
p(p+3)2
S1=a1−r=11−12=2,
S2=21−13=223=3,S3=31−14=334=4
.
.
.
SP=p1−1p+1=ppp+1=p+1
∴S1+S2+S3+⋯+Sp=2+3+4+........+p+1
=p2(2 × 2+(p−1)1)=p(p+3)2 (2,3,4,...,(p+1)are in AP)
(Sum of n terms in a A.P = n2(2a+(n−1)d)