If S1,S2,S3,________Sm are the sums of n terms of m A.P.'s whose first terms are 1,2,3,___m and common differences are 1,3,5_______, 2m−1 respectively. Show that S1+S2+S3+________+Sm=12mn(mn+1).
Open in App
Solution
Here a=1,2,3, m respectively and d=1,3,5, . 2m−1, and n=n To find S1+S2+S3+...+Sm S1=n2[2.1+(n−1).1] S2=(n/2)[2.2+(n−1).3] Sm=(n/2)[2.m+(n−1)(2m−1)] ∴S1+S2+S3+...+Sn=n(1+2+3+...m)+n(n−1)2[1+3+5+...+(2m−1)] =n⋅m(m+1)2+n(n−1)2⋅m2[1+2m−1], using S=n2[a+l] =12mn[m+1+m(n−1)]=12mn(mn+1).