∵S2=12+22+32+......+n2
⇒S2=n(n+1)(2n+1)6 ⋯(1)
And S4=14+24+34+.......+n4=∑n4
We know that,
∵n5−(n−1)5=5n4−10n3−5n+1 ⋯(2)
Put n=1,2,3,.........n in the equation (2)
⇒15−05=5.14−10.13+10.12−5.1+1
⇒25−15=5.24−10.23+10.22−5.2+1
⇒35−25=5.34−10.33+10.32−5.3+1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⇒n5−(n−1)5=5n4−10n3+10n2−5n+1 + ____________________________________
n5−0=5.∑n4−10∑n3+10∑n2−5∑n+∑1
⇒n5=5∑n4−10n2(n+1)24+
10n(n+1)(2n+1)6−5n(n+1)2+n
⇒n5=5∑n4−n(n+1)2⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩10n(n+1)2−10(2n+1)3+5⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭+n
⇒n5=5∑n4−n(n+1)2⎧⎨⎩30n2+30n−40n−20+306⎫⎬⎭+n
⇒n5=5∑n4−5n(n+1)(3n2−n+1)6+n
⇒5∑n4=n5+5n(n+1)(3n2−n+1)−6n6
⇒5∑n4=6n5+5n(n+1)(3n2−n+1)−6n6
⇒5∑n4=6n5+15n4+10n3−n6
⇒5∑n4=n6(6n4+15n3+10n2−1)
⇒5∑n4=n6(n+1)(2n+1)(3n2+3n−1)
⇒∑n4=n30(n+1)(2n+1)(3n2+3n−1)
∴S4=n30(n+1)(2n+1)(3n2+3n−1)
∴S4S2=n30(n+1)(2n+1)(3n2+3n−1)n(n+1)(2n+1)6
∴S4S2=15(3n2+3n−1)