If S=4−9x+16x2−25x3+36x4−49x5+......∞. Find the value of S for x=−12.
This series is not AP,GP,HP and AGP
But we see 4,9,16,25.......∞ are square numbers and 1,(−x),(−x)2,(−x)3,(−x)4,.......∞ is a geometric progression. if we subtract square numbers. We can form an AP.
So, multiply given series by common ratio and then subtract it with original series.
Let s=4−9x+16x2−25x3+36x4−49x5+......∞ -----(1)
Multiply by common difference in equation 1
−xs=−4x+9x2−16x3+25x4−36x5+......∞ -----(2)
) On subtracting equation 2 from equation 1
We get,
s(1+x)=4−5x+7x2−9x3+11x4−13x5+......∞ -----(3)
Multiply by common difference in equation 3
−s(1+x)x=−4x+5x2−7x3+9x4−11x5+......∞ -----(4)
On subtracting equation 4 from equation 3
s(1+x)2=4−x+2x2−2x3+2x4−2x5+......∞
s(1+x)2=4−x+2(x2−x3+x4−x5+......∞)
s(1+x)2=4−x+2x2(1−x+x2−......∞)
s(1+x)2=4−x+2x2.11+x
s(1+x)2=4−x+2x21+x=4+3x+x2x+1
s=x2+3x+4(x+1)3
When x=-12
s=(−12)2+3(−12)+4(−12+1)3
14−32+413=22