If s be the sum of the coefficients in the expansion of (px+qy+rz)n,p,q,r>0, then limn→∞S(S1n+1)n=
pq/r
e pq/r
0
None
s=(p+q+r)n ⇒ s(s1n+1)n=(p+q+rp+q+r+1)n p+q+rp+q+r+1<1⇒limn→∞s(s1n+1)n=0
If P(Q−r)x2+Q(r−P)x+r(P−Q)=0 has equal roots then 2Q=(where P,Q,r ϵ R)
If the sum of two of the roots of x3+px2+qx+r=0 is zero, then pq =