wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If S be the sum, P be the product and R be the sum of the reciprocals of n terms in a GP, prove that P2=(SR)n

Open in App
Solution

Let the given GP be a, ar, ar2, . . ., ar(n1). Then,

S=a(1rn)(1r) . . . (i)

and P=[a×ar×ar2××ar(n1)]

P=anr[1+2+3++(n1)]=anr12(n1)n

P=anr12(n1)n

P2=a2nr(n1)n . . . .(ii)

And R={1a+1ar++1arn1}=(1a).{1rn1}{1r1}

R=(ra).(1rn)(1r).rn

R=(1rn)a(1r).r(n1) . . . (iii)

On dividing (i) by (iii), we get

SR=a(1rn)(1r).a(1r).r(n1)(1rn)=a2r(n1)

(SR)n={a2r(n1)}n=a2n.r(n1)n=P2

[using (ii)].

Hence, P2=(SR)n


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon