If S be the sum, P be the product and R be the sum of the reciprocals of n terms in a GP, prove that P2=(SR)n
Let the given GP be a, ar, ar2, . . ., ar(n−1). Then,
S=a(1−rn)(1−r) . . . (i)
and P=[a×ar×ar2×⋯×ar(n−1)]
⇒ P=anr[1+2+3+⋯+(n−1)]=anr12(n−1)n
⇒ P=anr12(n−1)n
⇒ P2=a2nr(n−1)n . . . .(ii)
And R={1a+1ar+⋯+1arn−1}=(1a).{1rn−1}{1r−1}
⇒ R=(ra).(1−rn)(1−r).rn
⇒ R=(1−rn)a(1−r).r(n−1) . . . (iii)
On dividing (i) by (iii), we get
SR=a(1−rn)(1−r).a(1−r).r(n−1)(1−rn)=a2r(n−1)
∴ (SR)n={a2r(n−1)}n=a2n.r(n−1)n=P2
[using (ii)].
Hence, P2=(SR)n