If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then p2 is equal to
(SR)n
(d) (SR)n
Sum of n terms of the G.P., (S = \frac{a(r^n - 1)}{(r - 1)})
Product of n terms of the G.P.,
P=an r[s(s−1)2]
Sum of the reciprocals of n terms of the G.P.,
R=[1rn−1]a(1r−1)=(rn−1)ar(n−1)(r−1)
∴P2={a2rS(s−1)2}
⇒P2={a(rn−1)(r−1)}(rn−1)arn−1(r−1)
⇒P2={SR}n
Let the first term of the G.P. be a and the common ratio be r.
Sum of n terms, S=a(rn−1)r−1
Product of G.P., P=anrn(n+1)2
Sum of the reciprocals of n terms,
R=(1rn−1)a(1r−1)=(1−rnrn)a(1−rr)
P2={a2r(a+1)2}n
P2=⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩a(rn−1)r−1(1−rnrn)s(1−rr)⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎬⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭={SR}n