If S be the sum, P the product and R the sum of the reciprocals of n terms of a G.P., then (SR)n =
P2
S = a + ar + a r2 + a r2 + ......+ a rn−1
i.e. n terms
S = a(1−rn)1−r ........(i)
∴ P = product = a.ar.a r2. .........a rn−1 = an r1+2+3+4+5+.....+n−1 = an . rn(n−1)2
∴ p2 = a2n rn(n−1) ......(ii)
R = 1a + 1ar + 1ar2 + 1r3+..........+ 1arn−1 (n terms)
∴ R = 1a (1−1rn)1−1r = (rn−1)r−1. 1arn−1 .........(iii)
∴ SR = a. 1−rn1−r. (r−1)(rn−1).a rn−1 = a2 r(n−1) by (i) and (ii)
∴ [SR]n = a2n rn(n−1) = p2 by (ii)