Given ; (x2010+1)(1+x2+x4+⋯+x2008)=2010x2009
As x≠0, so dividing by x2009, we get
⇒(x+1x2009)(1+x2+x4+⋯+x2008)=2010⇒x+x3+x5+⋯+x2009+1x2009+1x2007+⋯+1x=2010⇒x+1x+x3+1x3+…+x2009+1x2009=2010
We know that,
x+1x∈(−∞,−2]∪[2,∞)x3+1x3∈(−∞,−2]∪[2,∞)⋮x2009+1x2009∈(−∞,−2]∪[2,∞)
So,
x+1x+x3+1x3+…+x2009+1x2009≥2×1005⇒x+1x+x3+1x3+…+x2009+1x2009≥2010
Therefore,
x+1x+x3+1x3+…+x2009+1x2009=2010
When
x+1x=2∴x=1
Hence, the number of elements in set S is 1.