If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively 2SS1S2+S1 and S2−S1S2+S1.
S=a+ar+ar2+ar3+....
S=a1−r .......(1)
S1=a2+a2r2+a2r4+a2r6.....
S1=a21−r2 ........(2)
S2=a2(1−r)2
S2=S1(1−r2)1−r2
(1−r)S2=S1(1+r)
S2−S2r=S1+S1r
S1r+S2r=S2−S1
r=S2−S1S1+S2
Put r in equation (1)
S(1−r)=a
a=S[1−S2−S1S2+S1]
a=S[S2+S1−S2+S1S2+S1]
a=2SS1S2+S1