S=51×3×7+73×5×9+95×7×11+...
Numerator =5,7,9
⇒Tn=2n+3, n=1,2,3,...
Similarly,
Denominator =(2n−1)(2n+1)(2n+5), n=1,2,3,...
⇒S=∞∑n=12n+3(2n−1)(2n+1)(2n+5)
By partial fraction
2n+3(2n−1)(2n+1)(2n+5)=a2n−1+b2n+1+c2n+5
On comparing the coefficients, we get
a=13, b=−14, c=−112
∴S=∞∑n=1(13(2n−1)−14(2n+1)−112(2n+5))
=13∞∑n=112n−1−14(∞∑n=112n−1−1)−112(∞∑n=112n−1−1−13−15)
=(13−14−112)∞∑n=112n−1+14+112(1+13+15)
=0×∞∑n=112n−1+14+112(2315)
S=1745
⇒45S=17
Note:
∞∑n=112n−1=1+13+15+17+19+111+..
∞∑n=112n+1=13+15+17+19+111+..
∞∑n=112n+5=17+19+111+..
⇒∞∑n=112n+1=∞∑n=112n−1−1
⇒∞∑n=112n+5=∞∑n=112n−1−1−13−15