wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If S=51×3×7+73×5×9+95×7×11+..., then the value of 45S is

Open in App
Solution

S=51×3×7+73×5×9+95×7×11+...

Numerator =5,7,9
Tn=2n+3, n=1,2,3,...
Similarly,
Denominator =(2n1)(2n+1)(2n+5), n=1,2,3,...

S=n=12n+3(2n1)(2n+1)(2n+5)

By partial fraction
2n+3(2n1)(2n+1)(2n+5)=a2n1+b2n+1+c2n+5
On comparing the coefficients, we get
a=13, b=14, c=112

S=n=1(13(2n1)14(2n+1)112(2n+5))
=13n=112n114(n=112n11)112(n=112n111315)
=(1314112)n=112n1+14+112(1+13+15)
=0×n=112n1+14+112(2315)
S=1745
45S=17


Note:
n=112n1=1+13+15+17+19+111+..
n=112n+1=13+15+17+19+111+..
n=112n+5=17+19+111+..

n=112n+1=n=112n11
n=112n+5=n=112n111315

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Term
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon