Sk=sin(2πkn+1)−icos(2πkn+1)
=−i[cos(2πkn+1)+isin(2πkn+1)]
=−iei2πkn+1
n∑k=1Sk=−in∑k=1zk, [z=ei2πn+1]
=−i(z+z2+z3+⋯+zn)
=−iz(zn−1)z−1
=−i(zn+1−zz−1)
Now, zn+1=e(i2πn+1)(n+1)=ei2π=1
∴n∑k=1Sk=−i(1−z)z−1=i
Pk=cos(π2k)+isin(π2k)=eiπ2k
∞∏k=1Pk=∞∏k=1eiπ2k
=eiπ2⋅eiπ22⋅eiπ23⋯
=exp[iπ(12+122+123+⋯)]
=eiπ=−1
∣∣∣n∑k=1Sk+∞∏k=1Pk∣∣∣=|i−1|=√2