If Sn=cosnθ+sinnθ, then the value of 3S4−2S6 is given by
1
Given,
Sn=cosnθ+sinnθ∴3S4−2S6=3(cos4θ+sin4θ)−2(cos6θ+sin6θ)=3[(cos2θ+sin2θ)2−2sin2θcos2θ]−2[(cos2θ+sin2θ)(cos4θ+sin4θ−cos2θsin2θ)]=3[1−2sin2θcos2θ]−2[(cos2θ+sin2θ)2−3cos2θsin2θ]=3−6sin2θcos2θ−2+6cos2θsin2θ=1