The correct option is D S20=cot−1(1.1)
Let tr denote the rth term of the series 3,7,13,21,... and
S= 3+7+13+21+...+tn
−S=0−3−7−13−21−...−tn−1−tn
__________________________________
0=3+4+6+8+...+2n−tn
⇒tn=3+4+6+...+2n=1+2×12n(n+1)
=n2+n+1
Let Tr=cot−1(r2+r+1)
=tan−1(1r2+r+1)
=tan−1(r+1−r1+r(r+1))
=tan−1(r+1)−tan−1r
Thus, the sum of first n terms of the given series is
∑nr=1[tan−1(r+1)−tan−1r]
=tan−1(n+1)−tan−1(1)
=tan−1[n+1−11+1(n+1)]=tan−1(nn+2)
=tan−1⎛⎜
⎜
⎜⎝11+2n⎞⎟
⎟
⎟⎠
S∞=limn→∞tan−1⎛⎜
⎜
⎜⎝11+2n⎞⎟
⎟
⎟⎠=π4,
S10=tan−11012=tan−156
S6=tan−134=sin−135
S20=tan−11011=cot−11.1