If Sn denotes the sum of first 'n' terms of an A.P. andS3n−Sn−1S2n−S2n−1=31 then the value of n is
15
S3n=3n2[2a+(3n−1)d]
Sn−1=n−12[2a+(2a+(n−2)d)]
⇒S3n−Sn−1=12[2a+(3n−1)d]+d2[3n(3n−1)−(n−1)(n−2)
=12[2a(2n+1)+d(8n2−2)
=a(2n+1)+d(4n2−2)
=(2n+1)[a+(2n−1)d]
S2n−S2n−1=T2n=a+(2n−1)d
⇒S3n−Sn−1S2n−S2n−1=(2n+1)
Given,
S3n−Sn−1S2n−S2n−1=31⇒n=15