Question 26 If Sn denotes the sum of first n terms of an AP, then prove that S12=3(S8−S4)
Open in App
Solution
∵Sum of n terms of an AP, Sn=n2[2a+(n−1)d]⋯(i) ∴S8=82[2a+(8−1)d]=4(2a+7d)=8a+28d AndS4=42[2a+(4−1)d]=2(2a+3d)=4a+6d Now,S8−S4=8a+28d−4a−6d=4a+22d⋯(ii) AndS12=122[2a+(12−1)d]=6(2a+11d) =3(4a+22d)=3(S8−S4)[fromEq.(ii)]∴S12=3(S8−S4)