Let a be the first term of the given A.P.
Then Sn=n2{2a+(n−1)d}......(1).
Now,
Sn+Sn−2−2Sn−1
=n2{2a+(n−1)d}+n−22{2a+(n−3)d}−2×n−12{2a+(n−2)d}
=12[n{2a+(n−1)d}+(n−2){2a+(n−3)d}−2(n−1){2a+(n−2)d}]
=12[n{2a+(n−1)d}+(n){2a+(n−3)d}−2{2a+(n−3)d}−2n{2a+(n−2)d}+2{2a+(n−2)d}]
=12[2an+n2d−nd+2an+n2d−3nd−4a−2nd+6d−4na−2n2d+4nd+4a+2nd−4d]
=12[2d]