sn=a(1−r)n1−r,Sn−1=a(1−rn−11−r
Now we know that
(x+y+z+.....)2=∑x2+2∑xy
∴2∑xy=(∑x)2−∑x2
∑x2=a2+a2r2+a2r4+...nterms
=a2(1−rn)21−r2
2∑xy=a2(1−rn)2(1−r)2−a2(1−r2n)1−r2 from (1)
a2(1−rn)(1−r)[1−rn1−r−1+rn1+r]
=a2(1−rn)1−r.2(r−rn)(1−r)(1+r)
=2r1+r.a(1−rn)1−r.a(1−rn−1)1−r
=2r1+rsn.Sn−1
∴sumxy=r1+rSn.Sn−1