wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Sn=(n1)sina+(n2)sin2a++(nn)sinna and Tn=(n1)cosa+(n2)cos2a++(nn)cosna
where nN and a be the non-zero real number such that a(2n1)π2, then which of the following is/are CORRECT?
(Here,(nr)=nCr)

A
S40=240cos40(a2)sin(20a)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
S40=239cos40(a2)sin(20a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
T40=239cos40(a2)cos(20a)1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
T40=240cos40(a2)cos(20a)1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A S40=240cos40(a2)sin(20a)
D T40=240cos40(a2)cos(20a)1
Let z be a complex number such that z=cosa+isina
Then, by De Moivre's theorem, we have
zn=cosna+isinna

Now,
1+Tn+iSn=1+(n1)(cosa+isina)+(n2)(cos2a+isin2a)++(nn)(cosna+isinna)
=(n0)z0+(n1)z+(n2)z2+...+(nn)zn
1+Tn+iSn=(1+z)n(1)

We know that,
1+z=1+cosa+isina=2cos2a2+2isina2cosa2=2cosa2(cosa2+isina2)
(1+z)n=2ncosna2(cosna2+isinna2)(2)

Using equation (1) and (2),
(1+Tn)+iSn=(2ncosna2cosna2)+i(2ncosna2sinna2)
Sn=2ncosna2sinna2
and Tn=2ncosna2cosna21

S40=240cos40(a2)sin(20a)
and T40=240cos40(a2)cos(20a)1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De-Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon