If Sn=(n1)sina+(n2)sin2a+⋯+(nn)sinna and Tn=(n1)cosa+(n2)cos2a+⋯+(nn)cosna where n∈N and a be the non-zero real number such that a≠(2n−1)π2, then which of the following is/are CORRECT? (Here,(nr)=nCr)
A
S40=240cos40(a2)sin(20a)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
S40=239cos40(a2)sin(20a)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
T40=239cos40(a2)cos(20a)−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
T40=240cos40(a2)cos(20a)−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AS40=240cos40(a2)sin(20a) DT40=240cos40(a2)cos(20a)−1 Let z be a complex number such that z=cosa+isina Then, by De Moivre's theorem, we have zn=cosna+isinna