wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Sn=n2p and Sm=m2p,mn, in an A.P, prove that Sp=p3

Open in App
Solution

Given that

Sn=n2p

Sn=n2(2a+(n1)d)

n2(2a+(n1)d)=n2p

2a+(n1)d=2np (1)


Also given that

Sm=m2p

Sm=m2(2a+(m1)d)

m2(2a+(m1)d)=m2p

2a+(m1)d=2mp (2)

Now, (1)(2)

2a+(n1)d2a(m1)d=2p(nm)

nddmd+d=2pn2pm

d(nm)=2p(nm)

d=2p

Substitute this in (1), we get

2a+(n1)2p=2np

2a+2np2p=2np

2a=2p

a=p

Now, consider Sp

Sp=p2(2a+(p1)d)

Substitute the values of a,d in the above equation, we get

Sp=p2(2p+(p1)2p)

Sp=p(p+(p1)p)

Sp=p(p+p2p)

Sp=p(p2)

Sp=p3

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of n Terms of an AP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon