If Sn=n2p and Sm3=m2p, m≠n, in an A.P., prove that Sp=p3.
Let a be the first term of the A.P. and d is the common difference. Then
Sn=n2pSn=n2(2a+(n−1)d)n2p=n2(2a+(n−1)d)np=12[2a+(n−1)d]2np=2a+(n−1)d……(i)
Again,
Sm=m2pSm=m2(2a+(m−1)d)mp=12[2a+(m−1)d]2mp=2a+(m−1)d……(ii)
Now subtract (1) from (2)
2p(m−n)=(m−n)dd=2p……(iii)
Substitute the value of (iii) in (ii)
⇒2mp=2a+(m−1)2p⇒2a=2p⇒a=p
The sum up to p terms will be
Sp=p2(2a+(p−1)d)⇒Sp=p2(2a+(p−1)2p)⇒Sp=p2(2a+2p2−2p)⇒Sp=p3