Sn=sin2πn+sin22πn+…+sin2(n−1)πn=12[1−cos2πn+1−cos4πn+⋯+1−cos2(n−1)πn]=12[(n−1)−(cos2πn+cos4πn+⋯+cos2(n−1)πn)]
We know that,
(cos2πn+cos4πn+⋯+cos2(n−1)πn)=cos0+cos2πn+cos(4πn) +⋯+cos(2(n−1)πn)−cos0=sinπsinπn⎡⎢
⎢
⎢⎣cos⎛⎜
⎜
⎜⎝2×0+(n−1)2πn2⎞⎟
⎟
⎟⎠⎤⎥
⎥
⎥⎦−1=−1
Therefore,
⇒Sn=12[n−1−(−1)]=n2
∴S100=50