The correct option is D 1332
Convert it into differences and use sum of n terms of an AP,
ie., Sn=n2[2a+(n−1)d]
Now, Sn=∑4nk=1(−1)k(k+1)2.k2
=−(1)2−22+32+42−52−62+72+82+……
=(32−12)+(42−22)+(72−52)+(82−62)+……
=2{(4+12+20……)n terms+(6+14+22+……)}n terms
=2[n2{2×4+(n−1)8}+n2{2×6+(n−1)8}]
=2[n(4+4n−4)+n(6+4n−4)]
=2[4n2+4n2+2n]=4n(4n+1)
Here, 1056=32×33,1088=32×34,
1120=32×35,1332=36×37
1056 and 1332 are possible answers