If Sn,Tn represents the sum of n terms and nth term respectively of the series 1+4+10+20+35+⋯, then nTn+1Sn=
Open in App
Solution
Sn=1+4+10+20+35+⋯+Tn⋯(1)Sn=1+4+10+20+35+⋯+Tn−1+Tn⋯(2) from (1)−(2) Tn=1+3+6+10+15+⋯+tn⋯(3)(where tn=Tn−Tn−1)Tn=1+3+6+10+15+⋯+tn−1+tn⋯(4) from (3)−(4) tn=1+2+3+4+⋯upto n terms∴tn=12n(n+1)=12(n2+n)∴Tn=∑tn=12(∑n2+∑n)=12(16n(n+1)(2n+1)+12n(n+1))=16n(n+1)(n+2) ∴Sn=∑Tn=16(∑n3+∑3n2+∑2n)=16(14n2(n+1)2+12n(n+1)(2n+1)+n(n+1))=124n(n+1)[n2+n+4n+2+4]=124n(n+1)(n+2)(n+3) So nTn+1Sn=16n(n+1)[(n+1)+1][(n+1)+2]124n(n+1)(n+2)(n+3)=4