Given that
Sp=1+rp+r2p+........∞ ............ (i)
Replace p by 2p in above eqn, we get
S2p=1+r2p+r4p+.........∞ .......... (ii)
S′p=1−rp+r2p−.......∞ .......... (iii)
Adding (i) & (iii)
Sp+S′p=2+2r2p+2r4p+................∞
⇒Sp+S′p=2(1+r2p+r4p+................∞)
⇒Sp+S′p=2(S2p)
Hence proved