If Sp denotes the sum of the series 1+rp+r2p+.... to ∞ and sp the sum of the series 1−rp+r2p− ....to ∞, prove that Sp+sp=2S2p.
Sp=1+rp+r2p+...+∞∴Sp=11−rpSp=1−rp+r2p+...+∞∴Sp=11+rpNow,Sp+sp=11−rp+11+rp=(1−rp)+(1+rp)(1+r−2p)=21−r2p=2S2pSp+sp=2×S2p=2S2p