If S(p,q,r)=∼p ∨∼(q ∨ r) is a compund statement, then S(~p,~q,~r) is
~S (p,q,r)
S(p,q,r)
p ∨(q ∧ r)
p ∨(q ∨ r)
S(p,q,r)=∼p ∨∼(q ∨ r)S( p, q, r)=∼(∼p) ∨∼(∼q ∨∼r)=p ∨∼(∼(q ∧ r))=p ∨(q ∧ r)
Negation of the statement ∼p→(q∨r) is
The dual of statement p∨(q∧r)≡(p∨q)∧(p∨r) is