The correct option is D x,y,z and n
∑nr=1Sr= ∣∣
∣
∣∣∑nr=12r xn(n+1)∑nr=16r2−1yn2(2n+3)∑nr=14r3−2nrzn3(n+1)∣∣
∣
∣∣
Now, ∑nr=12r=2(n)(n+1)2=n(n+1)
and ∑nr=16r2−1=∑nr=16r2−∑nr=11=6(n)(n+1)(2n+1)6−n=2n3+3n2=n2(2n+3)
and ∑nr=14r3−2nr=∑nr=14r3−∑nr=12nr=4(n(n+1))24−2n2(n+1)2=n3(n+1)
So we get
∣∣
∣
∣∣∑nr=12r xn(n+1)∑nr=16r2−1yn2(2n+3)∑nr=14r3−2nrzn3(n+1)∣∣
∣
∣∣= ∣∣
∣
∣∣n(n+1) xn(n+1)n2(2n+3)yn2(2n+3)n3(n+1)zn3(n+1)∣∣
∣
∣∣=0
Therefore answer is independent of x,y,z and n.
so D is correct