The correct option is C 20n2+20n+1
S=tan−1(1n2+n+1)+tan−1(1n2+3n+3)+....+tan−1(11+(n+19)(n+20))S=tan−1(n+1−n1+n(n+1))+tan−1[(n+2)−(n−1)1+(n+1)(n+2)]+.....+tan−1[(n+20)−(n+19)1+(n+19)(n+20)]=[tan−1(n+1)−tan−1(n)]+[tan−1(n+2)−tan−1(n+1)]+......+[tan−1(n+20)−tan−1(n+19)]=tan−1(n+20)−tan−1(n)=tan−1(201+n2+20n)tans=20n2+20n+1Hence,theoptionCiscorrectanswer.