The correct option is A S={1}
S={x∈N:2+log2√x+1>1−log1/2√4−x2}
We have,
2+log2√x+1>1−log1/2√4−x2
⇒x+1>0,4−x2>0
⇒x>−1,−2<x<2
⇒−1<x<2 ...(1)
Now,
1+log2√x+1>log2√4−x2
⇒log22√x+1>log2√4−x2
⇒2√x+1>√4−x2
Squaring both the sides
⇒4(x+1)>4−x2
⇒x2+4x>0
⇒x>0 or x<−4 ...(2)
From (1) and (2)
⇒0<x<2