We have, secα=HypotenuseBse=54 So, we draw a right triangle ABC, right angled at B such that Hypotenuse = AC = 5 units, Base = 4 units, and ∠BAC = α. By Pythagoras theorem, we have AC2=AB2+BC2 ⇒52=42+BC2 ⇒BC2=52−42=9. ⇒BC=√9=3 ∴tanα=BCAB=34 Now, 1−tanα1+tanα=1−341+34=1474=17 Note : It should be noted that : sin2θ=(sinθ)2,sin3θ=(sinθ)3,cos3θ=(cosθ)3 etc.