wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secα=secβsecγ+tanβtanγ then show that secβ=secγsecα±tanγtanα

Open in App
Solution

secα=secβsecγ+tanβtanγtanβtanγ=secαsecβsecγ
squaring on both sides
tan2βtan2γ=sec2α+sec2βsec2γ2secαsecβsecγ(sec2β1)tan2γ
=sec2α+sec2βsec2γ2secαsecβsecγ
(sec2γtan2γ)sec2β(2secαsecγ)secβ+(sec2α+tan2γ)=0
sec2β(2secαsecγ)secβ+(sec2α+tan2γ)=0
this is in the form of ax2+bx+c=0 whose roots areb±b24ac2a
secβ=2secαsecγ±4sec2αsec2γ4(tan2γ+sec2α)2(1)=secαsecγ±sec2α(sec2γ1)tan2γ
=secαsecγ±tan2γ(sec2α1)=secαsecγ±tanαtanγ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon