If sec β=α+14a,then the value of secβ+tanβ is
We know that
sec2β−tan2β=1
Therefore
tanβ=±√sec2β−1
tanβ=±√α2+(14α)2+12−1
tanβ=±√α2+(14α)2−12
tanβ=±√(α−14α)2
tanβ=±(α−14α) ...(i)
Hence secα+tanα=2αor12α
The answer is B