1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Range of Trigonometric Ratios from 0 to 90 Degrees
If θ+tanθ= p,...
Question
If
sec
θ
+
tan
θ
=
p
, prove that
i
sec
θ
=
1
2
p
+
1
p
ii
tan
θ
=
1
2
p
-
1
p
iii
sin
θ
=
p
2
-
1
p
2
+
1
Open in App
Solution
i
We
have
,
sec
θ
+
tan
θ
=
p
.
.
.
.
.
1
⇒
sec
θ
+
tan
θ
1
×
sec
θ
-
tan
θ
sec
θ
-
tan
θ
=
p
⇒
sec
2
θ
-
tan
2
θ
sec
θ
-
tan
θ
=
p
⇒
1
sec
θ
-
tan
θ
=
p
⇒
sec
θ
-
tan
θ
=
1
p
.
.
.
.
.
2
Adding
1
and
2
,
we
get
2
sec
θ
=
p
+
1
p
⇒
sec
θ
=
1
2
p
+
1
p
ii
Subtracting
2
from
1
,
we
get
2
tan
θ
=
p
-
1
p
⇒
tan
θ
=
1
2
p
-
1
p
iii
Using
i
and
ii
,
we
get
sin
θ
=
tan
θ
s
e
c
θ
=
1
2
p
-
1
p
1
2
p
+
1
p
=
p
2
-
1
p
p
2
+
1
p
∴
sin
θ
=
p
2
-
1
p
2
+
1
Suggest Corrections
2
Similar questions
Q.
If sec θ + tan θ = p, prove that sin θ =
p
2
-
1
p
2
+
1