wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If sec θ +tan θ = p, show that, p2-1p2+1 = sin θ .

Open in App
Solution

Given: secθ+tanθ=pNow, p2-1p2+1= sec θ+tanθ2-1sec θ+tanθ2+1= sec2θ+tan2θ+2 secθ tan θ-1sec2θ+tan2θ+2 secθ tan θ+1= 2tan2θ+2tan θ sec θ2sec2θ+2secθ tan θ=2tanθtanθ+secθ2secθ(tanθ+secθ)= tan θsec θ= sin θcos θ×cos θ1 = sin θ

Hence, proved.

flag
Suggest Corrections
thumbs-up
18
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Ratios from 0 to 90
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon