wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

If sec θ = 178 then prove that 3-4sin2θ4cos2θ-3=3-tan2θ1-3tan2θ.

Open in App
Solution

It is given that sec θ = 178.

Let us consider a right ABC right angled at B and C=θ.
We know that cos θ = 1sec θ= 817 = BCAC

So, if BC = 8k, then AC = 17k, where k is a positive number.
Using Pythagoras theorem, we have:
AC2 = AB2 + BC2
⇒ AB2 = AC2 - BC2 = (17k)2 - (8k)2
⇒ AB2 = 289k2 - 64k2 = 225k2
⇒ AB = 15k.

Now, tan θ = ABBC = 158 and sin θ = ABAC = 15k17k= 1517

The given expression is 3 - 4sin2θ4cos2θ- 3 = 3 - tan2θ1 - 3tan2θ.

Substituting the values in the above expression, we get:
LHS= 3 - 41517248172 - 3 = 3 - 900289256289- 3 = 867-900256-867= -33-611=33611

RHS = 3-15821-31582=3-225641-67564=192-22564-675=-33-611=33611

∴ LHS = RHS
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Napier’s Analogy
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon