The correct option is D fourth quadrant.
Given, sec θ+tan θ=12we know that sec2 θ−tan2 θ=1⇒(sec θ+ tan θ)(sec θ−tan θ)=1⇒12(sec θ−tan θ)=1⇒ sec θ−tan θ=2Now, adding both equations we get,2sec θ=52⇒sec θ=54⇒cos θ=45Now, substituting the value of sec θ, we get tan θ=−34Now, looking at the signs of both cos θ and tan θwe see cos θ >0 and tan θ<0Thus, 'θ' lies in the fouth quadrant.