Given,
secA=54
Therefore, cosA=1secθ=45
We know that,
cosA=adjacentSideHypotenuse
From Pythagoras theorem,
(Hypotenuse)2=(oppositeSide)2+(adjacentSide)2
52=(opposite Side)2+42
(opposite Side)2=25−16=9
(opposite Side)=3
sinA=OppositeSideHypotenuse=35
tanA=OppositeSideAdjacentSide=34sinθ−2cosθtanθ−cotθ=35−2(45)34−43
=(−55)(−712)