wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If secθ=178, verify that 34sin2θ4cos2θ3=(3tan2θ)(13tan2θ).

Open in App
Solution

sec θ=178cos θ=817cos2 θ=64289sin2 θ=1cos² θ=164289=225289tan2 θ=sin2 θcos2 θ=2256434sin2 θ=34×225289=332894cos2 θ3=4×642893=611289L.H.S.(34sin2 θ)(4cos2 θ3)=33611And3tan2 θ=322564=336413tan2 θ=13×22564=61164R.H.S.(3tan2 θ)(1tan2 θ)=33611Hence proved L.H.S=R.H.S(34sin2 θ)(4cos2 θ3)=(3tan2 θ)(13tan2 θ)


flag
Suggest Corrections
thumbs-up
75
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon